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ORDER BARRIERS FOR CONTINUOUS 
EXPLICIT RUNGE-KU1TA METHODS 

BRYNJULF OWREN AND MARINO ZENNARO 

ABSTRACT. In this paper we deal with continuous numerical methods for solv- 
ing initial value problems for ordinary differential equations, the need for which 
occurs frequently in applications. Whereas most of the commonly used multi- 
step methods provide continuous extensions by means of an interpolant which 
is available without making extra function evaluations, this is not always the 
case for one-step methods. We consider the class of explicit Runge-Kutta meth- 
ods and provide theorems used to obtain lower bounds for the number of stages 
required to construct methods of a given unifonn order p. These bounds are 
similar to the Butcher barriers known for the discrete case, and are derived up to 
order p = 5. As far as we know, the examples we present of 8-stage continuous 
Runge-Kutta methods of uniform order 5 are the first of their kind. 

1. INTRODUCTION 

Consider the initial value problem (IVP) for ordinary differential equations 
(ODE's) 

(1.1) y'(x) = f(x, y(X)) y(x0) =y0, 

where yo and y are m-vectors and x is a real variable. The function f: R x 
Rm -- Rm is assumed to be as smooth as necessary. The solution y(x) is sought 
in the interval [x0, Xf]. 

The large variety of methods available nowadays allows almost any problem 
of the kind (1.1) to be handled efficiently. Most of these methods are designed to 
furnish the solution at a discrete set of points, say a mesh A:= {x0 < x1 < * < 
XN := Xf} . However, many applications require a continuous approximation to 
y(x) in the entire interval [xo, Xf]. These include differential equations with 
deviating arguments, problems where dense output is required, and problems 
where discontinuities are present. At first sight, it seems that multistep methods 
would be appropriate for these cases, as they provide a continuous extension 
by means of an interpolant which is available without making extra function 
evaluations. But their poor ability to handle problems with discontinuities, and 
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the fact that they cannot combine high order of accuracy with good stability 
properties are serious deficiencies that have to be taken into account. For these 
reasons, many authors have recently investigated continuous extensions of one- 
step methods (see, e.g., Bellen and Zennaro [1], Enright et al. [5], Horn [7], 
N0rsett and Wanner [8], Shampine [10], and Zennaro [1 1, 12, 13], as well 
as the book by Hairer et al. [6]). It appears that one can either construct a 
continuous one-step method directly, giving a discrete method as a by-product, 
or one can extend an already existing discrete method, possibly by including 
some additional function evaluations. 

In this paper we follow the former approach in order to construct continuous 
explicit Runge-Kutta methods (CERK methods) of the form 

(1.2a) Ki=f (xo+cihYo+hEaijKj , 

j=1 ) 
(1.2b) u(xo + Oh) = yo + h E bi(O)Ki 0 E [0, 1]. 

i=1 

u(xo + Oh) is a continuous approximation to y(x) in the interval [xo, xo + h] 
and bi(0), i = 1, ... ., v, are polynomials of degree < d, where d is a positive 
integer. We shall also require c1 = i- aija, and b (0) = 0 for i = 1, ...,v. 
Note that cl = 0, which implies that the first stage reduces to K1 = f(xo, yo). 
Moreover, the coefficients aij define a strictly lower triangular v x v-matrix A. 

As in the discrete case, which is obtained by setting y1 := u(xo + h), v is 
the number of stages, whereas the uniform order (which we shall simply refer 
to as the order) is defined as the greatest integer p for which 

(1.3) max Iy(xo + Oh) - u(xO + Oh) =O(h 1) 
0<0<1I 

Here, I stands for any norm on Rm . 
It is well known that efficiency, viewed as the ratio between the accuracy of 

the computed approximations and computational effort, is a very important pa- 
rameter to be considered when designing new numerical methods. Therefore, 
the main goal of this paper is to find methods which use the lowest possible 
number of stages to attain a fixed prescribed order. Section 2 is devoted to pro- 
viding theorems which can be used to determine lower bounds for the numbers: 

CEN(p):= min v, 
in(v)EMp 

where m (v) is a CERK method with v stages, and Mp is the set of all CERK 
methods with order p . The numbers CEN(p) are similar to the famous Butcher 
barriers EN(p) for the discrete case. 

It is well known (see, for example, the papers quoted above) that for implicit 
Runge-Kutta methods the minimal number of stages, say N(p) and CN(p), 
necessary to get order p for the discrete and continuous case, respectively, are 
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easy to find in general, and are attained by collocation methods. They are 

N(p) = [(p+ 1)/2] and CN(p) = p. 

For CERK methods things are, as for the discrete case, considerably more com- 
plicated. One has the obvious result 

CEN(p) > EN(p), 

and from the literature referred to above, one can extract the following bounds: 

(1.4) CEN(l) = 1, CEN(2) = 2, 3 < CEN(3) < 4, 

5 < CEN(4) < 6, 6 < CEN(5) < 9, 

where the upper bounds are determined by known CERK methods. Although 
in ? 3 we solve the problem completely up to p = 5, we will not be able to derive 
a general formula for CEN(p), and we suspect that, as for EN(p), this is a 
very hard task. 

2. LOWER BOUNDS ON CEN(p) 

In this section we shall use extensively the theory developed by Butcher [2, 
3] without giving specific references, as we shall assume that the reader is ac- 
quainted with trees, order conditions, and related topics. We recommend the 
books by Butcher [4] and Hairer et al. [6] for background material, and we will 
use the notation of the latter. 

It is easy to see that in order to fulfill (1.3), the degree d of the polynomials 
bi(0) must satisfy d > p. On the other hand, allowing d > p can lead to 
approximate solutions u(x) whose derivatives are unbounded as h -+ 0 (see 
[8]). Therefore, we always choose d = p, so that, according to [12, Theorem 
5], the polynomials b(0) span the space IpY-1 of polynomials of degree p - 1 . 
With reference to (1.2a-b) it is necessary that the number v* of distinct c 's 

satisfies 

(2.1) vI >p. 

Consider the continuous version of the order conditions, which becomes 
v 6p(t) 

(2.2) E b1(0)1j(t) = (t) for all trees t such that p(t) < p, 

where Dj (t) is the jth elementary weight of the tree t, p(t) is the order of t, 
and y(t) is a coefficient depending on the tree t. Now, putting 

(2.3) zj(6) :=b(6), 1=1,..., LJ, 

(2.2) becomes 

(2.4) E zjz()Dj(t) = p (t) for all trees t such that p(t) < p . 
j=1 yt 
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For each r > 1, let nr be the number of trees such that p(t) = r. Thus, a CERK 
method of order p must satisfy Np conditions (2.4), where Np = ZP= nr. It 
is well known that n, = 1, n2 1 - n3 = 2, n4 = 4, n5 = 9, so that N, = 1 
N2 =2, N3 =4, N4= 8, N5 = 17. Ingeneral,wecannumberthe Np trees t 
increasingly in terms of p(t), such that i > j if p(ti) > p(tj) . We then rewrite 
the conditions (2.4) as 

(2.5) Oijzj(0) = iyt i = l,.. Np, 

where )ij = Dj (ti) . Moreover, by writing 

p-1 

(2.6a) z1(0) = Zj, o 
k=O 

(2.6b) iy(t) = qj0, 

and by defining the Np x v matrix D:= (ij), the v x p matrix Z :(Zjk) 
and the Np x p matrix Q (qil), (2.5) becomes 

(2.7) Z = Q. 
The Np x v matrix CD depends on the v x v matrix A of the coefficients of the 
RK method, whereas the Np x p matrix Q is independent of A. Incidentally, 
observe that (2.6b) implies 

(2.8) qi,p(t)-l= 
p(ti) and qil=O forl$p(ti)- 1. 
y(t1) 

So we can define the maps 

Fp: U Y(R v Rv) U Y(R v 
RNP) such that Fp(A):=?D 

i>1 i>1 

and 

Gp: U Y(R v RV) -, U -(Rv+P RNP) such that GP(A) =?IQ, 
i>1 i'>1 

where sIQ is the Np x v matrix obtained by attaching the rows of Q to the 
rows of (D. 

Proposition 2.1. A strictly lower triangular v x v matrix A defines a v-stage 
CERK method of order p if and only if rank(Fp(A)) = rank(Gp(A)). 
Proof. From (2.7) it is obvious that any CERK method of order p satisfies 
rank(Fp(A)) = rank(Gp(A)). Vice versa, if a v x v matrix A is such that 
rank(Fp(A)) = rank(Gp(A)), then the system Fp(A)Z = Q has at least one 
solution Z. By (2.3) and (2.6a), this matrix Z defines uniquely v polynomials 
bi(6), i = 1, ... , v, of degree < p such that bi(O) = 0, and hence, the matrix 
A defines the stages of some CERK method of order p. o 
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In view of the result above, we are only interested in matrices belonging to 
the set 

eP:= |A E U Y(RV, Rv)I A is strictly lower triangular, 
i>1 

rank(Fp (A)) = rank(Gp(A)) 

From this point on, we shall say that v is the dimension of A if A is a 
v x v matrix, and we write dim(A) = v. It is clear that in general we have 
dim(A) > rank(Fp,(A)). 

Definition 2.2. A matrix A E 4'p is called p-minimal if dim(A) =rank(Fp (A)). 
Moreover, we define 

-*< := {A E A'fIA is p-minimal}. 

Proposition 2.3. If the matrix A E Af , then it cannot have two equal rows; in 
particular, we must have c2 # 0. Moreover, dim(A) < Np . 
Proof. The first part follows easily from the fact that two equal rows in A 
imply two equal columns in Fp(A). To see that dim(A) < Np, it is sufficient 
to observe that rank(Fp(A)) < Np. o 

The following theorem represents a basic result for our theory, since it allows 
us to restrict consideration to p-minimal matrices. 

Theorem 2.4. Let A E A"p be such that p := rank(Fp(A)) < dim(A). Then 
there exists a matrix A* E O*P such that dim(A*) = p. 
Proof. It is sufficient to prove that there exists a matrix A' E A"p such that 
dim(A') = dim(A) - 1 and rank(Fp(A')) = p. In fact, this procedure can 
be applied (dim(A) - p) times in order to get the desired result. Let v := 
dim(A) and CID Fp(A). By hypothesis, we can find a column, say the kth 

column (Olk' I ... 'N k)T, which is a linear combination of the preceding k- 1 
columns, that is 

k-i 

(2.9) (Olk' IN k) = j( j X Np) 
j=1 

for some A E R. Now, define the v x v matrix A" as follows: 
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In order to prove that A" E /4", first observe that the strictly lower triangular 
form of A is inherited by A" . Now, define D" Fp (A") . In view of (2.1Oa), 
we can easily conclude that the kth column ('k' ... / )T of D" is equal 

to (1, 0, ..., 0)". Moreover, since A and A" are strictly lower triangular, 
the first column of both cD and D" are equal to (1, 0, ... , 0)T. As for the 
remaining columns of D", we prove by induction on the row index i that 
they are all equal to the corresponding columns of (D. This is clearly true for 
i = 1, since the first row of Fp(A) is equal to (1, ..., 1)T for any matrix A, 
and corresponds to the only condition (2.5) of order r = 1. We assume that 
the property is true for all i < n - 1 and prove it for i = n. Select the nth 
condition of (2.5) which corresponds to the tree tn where p(tn) > 2. This 
tree can either have the form [tn,] for some tree tn, of order p(tn) - 1, or the 
form [t,..., tVS ] for s (> 2) trees tv,, where 1 < p(t )p < p(tn) - 2 and 

p(tn) = 1+ EIj- p(tv ) . In the former case, since aj =aj = 0 for 1 > j, we 
have 

j-i 

(2.11la) O?nj LailOn'l' j = 2, . ,vz, j i4 k, 
1=1 

and 
j-i 

(2.1 lb) = ZaJlii, j = 2,.. v, Ij 5 k, 
1=1 

whereas in the latter case, with tn: [t], i= 1, ...,s (with P(tn) = 1 + 

p(tv,.) 
< p(tn) - 1), we have 

s s 

(2.12) r) =fJ'k,X and rn = fJ/j, j =2, ... , zj : k. 
ni= Onnj ndi=l 

Since we have numbered the conditions increasingly in terms of their order, we 
get in either case n' , n nS < n- 1 and hence, by the inductive hypothesis, 

(2.13) dnj =dnj Vj= 2, ...v, i j:fk, 

and 

(2.14) k" =+ni Vi=1,...,s and j=2,...,v, jfhk. 

Therefore, in the latter case, by (2.12) and (2.14) we immediately get q$n = 

j = 2, ... , j k . As for the former case, by (2.1 lb), (2.13), and (2.1 Oc-d), 
and since ?nk = 0, we have 

j-1 j-1 j-1 j-1 

O Z a11 Xn1 = a On = , aln,'l + alk Z Al 0n'lX 
1=1 1=1 1=1 1=1 

l#-k l#4k l<k 
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and' hence, by (2.9) and since aik = 0 for j < k, 
j-1 

'nj 
= 

Eajl0n'l 
1=1 

which by (2.1la) yields q"nj = Onj j = 2, ..., v , i 5 k. So the induction 
works. By (2.9), and since 

(Oik 5 ... 5 ON(, 0,..,0) 
(4lkS ** ?N k) = +1'* N,1) T 1S0***S0 

we can conclude that the range of 'D is equal to the range of 'D" and that 
A" E A" with rank('D") = p. Moreover, it is clear that the v x p matrix 
Z satisfying D"Z = Q (see (2.7)) can be chosen with the kth column equal 
to the zero-vector, which means that bk(0) = 0 in (1.2b). Furthermore, by 
(2.10b), the kth stage in (1.2a) is completely useless for the CERK method 
defined by A", as it is not involved in the computations of the following stages. 
Consequently, the (v - 1) x (v - 1) matrix A' obtained by suppressing the kth 
row and the kth column of A" defines the same CERK method (without the 
useless kth stage) and the matrix Fp(A') is obtained by suppressing the kth 

column of D". So A' is the desired matrix, satisfying dim(A') = dim(A) - 1 
and rank(Fp(A')) = p. o 

By virtue of the theorem above, the following result is now obvious. 

Corollary 2.5. The set Y*< is nonempty for all p > 1, and the minimum number 
of stages CEN(p) required for a CERK method of order p is 

CEN(p) = mmn dim(A). 

Moreover, if A E 0P and A 0 AcP, then dim(A) > CEN(p). 

The problem of finding CEN(p) can be slightly simplified by isolating the 
following p conditions of (2.5), which we shall call the primary conditions: 

v 

(2.15) cr- 
I 

(0) = ar-, ) r = 1, P..p 

j=1 

These conditions correspond to the trees defined recursively by Tr := [T, Tr-2] 

where T := [ ] and Tr := [T]. Since the matrices A are strictly lower trian- 
gular, the remaining Np - p conditions of (2.5), which we shall call secondary 
conditions, do not explicitly involve the polynomials z1 (0) and Z2(6), as they 
satisfy qi$ = Oi2 = 0. Roughly speaking, the dimension of the problem is, in 
some sense, reduced by two units. 

Remark 2.6. Since all the secondary conditions correspond to trees of order 
r > 3, they always yield qiI = 0 in (2.6b). 

Now, for a v x v matrix A E J*P with p > 3, we introduce the following 
equivalence relation on the set of indices {1, ..., v}: 

i = j if and only if ci= Cj. 
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There are v * equivalence classes S1, ... , Sv, , and we assume without restric- 
tions that 1 E S, (i.e., ci = 0 if and only if i E S,) and that 2 E S2 (recall 
that c2 :A 0 by Proposition 2.3). 

Definition 2.7. For a v x v matrix A E A" with p > 3 we shall call a 
good index set either the empty set 0 or any nonempty subset of {3, ... , v} 
whose elements do not belong to more than p - 3 equivalence classes among 

S3, *..., S,,* . 

Remark 2.8. If p = 3, then S c S1 U S2 for any good index set S. 

Lemma 2.9. Let A E with p > 3, and let S be a good index set for A. 
Then, with reference to (2.5) and (2.6a), in the set of polynomials {zj()li > 3, 
j ? S} (which is nonempty by (2.1)) there exists at least one, say zj(0), such 
that zj $ 0. 

Proof. Choose an index ik E Sk for any k = 3, ..., zJ*, and assume, without 
restrictions, that S c S, U S2U .U Sr for some r < p - 1 < vz* - 1 . Since 
the polynomials z1(0), i = 1, ... ., v, satisfy the primary conditions (2.15) for 
any polynomial 7r(0) E rlp , we easily get 

(2.16) 7r(0) = Zr (Cj)Zj(0) = Zr(Cjk) E Zj(0). 
j=1 k=1 jESk 

So, if we define 7r(6) 6(6 - c2)(0 - cj) * * * (6 - cj ), we get Ir(cj) = 0 for all 
i E Si U S2 U *** U Sr, so that (2.16) becomes 

7r(O) 
= 

1:7(Cjk) E: Zj(0) 

k=r+1 IESk 

Since the coefficient of 0 in 7r(6) is (-1)r c2cj *3 c1 $ 0, and since r (cj) k 

0 forall k= r+ 1, ..., v*, the proof is complete. O 

We shall say that N (> 1) conditions (2.5) are linearly independent if and 
only if the corresponding N rows of the matrix Gp (A) are linearly independent. 

Lemma 2.10. Let A E ii"p, and let N conditions (2.5) be linearly independent. 
Then they explicitly involve N polynomials zj(0). 
Proof. It is sufficient to observe that, since rank(Fp (A)) = rank(Gp (A)), if N 
rows of the matrix Gp(A) are linearly independent, then the same N rows of 
the matrix Fp (A) must also be linearly independent. 0 

Now we are in a position to state the main result of this section, which is a 
tool for finding lower bounds for CEN(p). 

Theorem 2.11. Let A E A*p with p > 3, and let N secondary conditions from 
(2.5) be linearly independent. Let S be the set formed by the indices j > 3 of 
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the polynomials zj(0) which are not explicitly involved in these N conditions 
(possibly S = 0). Then 

dim(A) > N+s + 2, 

where s is the cardinality of S. Moreover, if S is a good index set for A, then 

dim(A) > N +s+3. 

Proof. Since the N conditions we consider are secondary, they involve neither 
zI(6) nor Z2(0). Thus by Lemma 2.10, we have in any case that dim(A) > 
N + s + 2. To prove the stronger inequality, assume that S is a good index 
set for A, and that dim(A) = N + s + 2. Then, again by Lemma 2.10, there 
are exactly N polynomials zj(6), the ones with j > 3 and j 0 S, which are 
involved in these N conditions. Moreover, the N x N matrix V , obtained by 
suppressing the s + 2 vanishing elements relevant to the missing polynomials 
zj(H) in each of the corresponding N rows of Fp(A), is nonsingular. Thus, 
solving the subsystem (2.7) defined by these N conditions yields zj1 = 0 for 
all j > 3, j 0 S, which contradicts Lemma 2.9. 0 

We close this section by considering the minimal number of stages that must 
be added to a discrete Runge-Kutta method to extend it to a CERK method 
of the same (uniform) order. On the basis of the theory of this section, the 
following result is easy to prove. 

Theorem 2.12. Let the v x v matrix A define a discrete explicit Runge-Kutta 
method of order p. Consider a continuous extension of this method with v' stages 
and uniform order p. Then v - v > 3, where 3 = rank(Gp(A)) - rank(Fp(A)). 

Proof. Let the v.x v matrix A define the extended method. Since the first 
v columns of Fp(A) and Fp(A) are identical, it follows that rank(Fp(A)) - 

rank(Fp(A)) < v - v. On the other hand, the v - v columns arising from 
the additional stages cannot decrease the rank of Gp(A), so that we must have 
rank(Gp(A)) > rank(Gp(A)). Thus, using Proposition 2.1, we have 

3 = rank(Gp (A)) - rank(Fp(A)) < rank(Gp(A)) - rank(Fp(A)) 
= rank(Fp(A)) - rank(Fp(A)) < v - V) 

and the proof is complete. 0 

For a given discrete Runge-Kutta method, this bound is easy to calculate and 
in many of the cases we have considered it is sharp. By comparing the above 
theorem with known interpolants we get 

Corollary 2.13. The minimal (total) number of stages of any 5th-order continuous 
extension of the Dormand-Prince(4,5) pair, or the Runge-Kutta-Fehlberg(4,5) 
pair, is 9. 



654 BRYNJULF OWREN AND MARINO ZENNARO 

3. FINDING CEN(p) FOR p < 5 

Now we shall apply the results from ?2 in order to find the minimum number 
of stages CEN(p) for p = 3, 4, 5. Our strategy will always be the following: 

(i) In view of Corollary 2.5 we consider a v x v matrix A E A'p . We assume 
the maximum number of linearly independent secondary conditions to be in 
turn 1, 2, ... , Np - p, so that we either obtain an absurdity or, by Theorem 
2.1 1, a lower bound for v = dim(A). 

(ii) We will compare these lower bounds to the upper bound given by some 
existing method, already known for p = 3, 4 (see (1.4)) and new for p = 5. 

We shall denote by 0(i) the ith row (Oils, ... , Xi>) of the matrix Fp(A) 
and by Wi) the ith row (l, ... , /i, qio ... , qip_) of the matrix Gp(A). 
Moreover, for each r > 1 , let Rr be the set of rows of the matrix Fp(A) which 
correspond to conditions of order r. In the proof of Theorem 2.4 we saw 
that, if +(i) E Rr then either 0(i) = 0ii)AT, where (i )E Rr_ (and we shall 

say that +(i), as well as the corresponding condition, is an A-transformation) or 

ij = j j = 1= . v, where 0(in) ERr with rn < r- 1 . In particular, 

in the latter case we may have +(i) - qVi)C, where O(i) E Rr- and C 

diag(0, c2, ... , c>,) (and we shall say that +(i), as well as the corresponding 
condition, is a C-transformation). Note that the primary condition of order 
r is the C-transformation of the primary condition of order r - 1. In view 
of this, and since we have decided to number the conditions increasingly in 
terms of their order, each set of nr conditions of order r will be numbered as 
follows: First the C-transformations, then the A-transformations, and finally 
the remaining conditions if any. It turns out that the primary condition will 
always be the first in each set of nr conditions. 

3.1. Order p = 3. There is only one secondary condition for the case p = 3. 
This condition corresponds to -(4) = (X(4), 0, 0, 1/2), where 0(4) = 0(2)AT. 
Since Vu(4) : 0, Theorem 2.1 1 yields in every case v > 4. Thus, the existence of 
the 4-stage CERK method of order 3 associated with the RKN(3,4) embedded 
pair (see Enright et al. [5]) implies 

CEN(3) = 4. 

Alternatively, this upper bound also follows from Proposition 2.3 since N3 = 4. 
Moreover, it is-clear that every 4 x 4 matrix A that results in a nonsingular 
F3(A) (which is a 4 x 4 matrix as well) determines a 4-stage CERK method of 
order 3. 

3.2. Order p = 4. There are four secondary conditions: one of order 3, cor- 
responding to Vy(4) = (X(4), 0, 0, 1/2, 0) and three of order 4, correspond- 
ing to y(6) = (X(6) 0, 0,0, 1/2), V(7) = (0(7), 0, 0, 0, 1/3), and v/(S) = 
((8)* 0, 0, 0, 1/6). Moreover, 0(6) = (4)C, 0(7) = ,b(3)AT, and 0(8) - 

0(4)AT. 
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To begin with, we observe that the maximum number N of linearly indepen- 
dent conditions clearly obeys N > 2. Then assume N = 2. In this case 
v (6)/ (7), and v(8) are proportional and therefore, since 083 = 0, we get 

2 
063 = 0 and 073 = a32c2 = 0 as well. So a32 = 0 because c2 5 0, and hence 
043 = a32C2 = 0, which means that z3(6) is not involved in the secondary 
conditions. Consequently, with reference to Theorem 2.1 1, we have S D {3}, 
which is a good index set for A, and hence, in every case we obtain v > 6. 
N > 3 implies in every case v > 6 by Theorem 2.11. The 6-stage CERK 
method of order 4 associated with the Dormand-Prince(4,5) embedded pair 
(see Hairer et al. [6]) provides an upper bound for CEN(4), so we have 

CEN(4) = 6. 

Now, consider the conditions to be imposed on a 6 x 6 matrix A, necessarily 
4-minimal (see Corollary 2.5), in order that it determines a CERK method of 
order 4. First, observe that, in view of the case p = 3 above, the rows (1), 

(2), fv(3), (4), and V(5) must be linearly independent. Note that (1) = 

(1, 1, 1, 1,1, 1, 1, 0, 0, 0), V (2) = (0, C2, C3, C4, C5, C6, 0,1,0 0), V/(3) 

= (0, c2,c32, c4, c52, c62, , , 1, 0), and V (5) = (0, 3 C33 3 c36, 0, 0, 
0, 1) correspond to the primary conditions. We can conclude that in order to 
have rank(G4(A)) = 6, it is necessary and sufficient that at least one of the fol- 
lowing conditions be satisfied, where S:= span{jVI(, v(2) (3), (4), V (5)}: 

(i) v (6) S and v(7), v(8) E span{S, V (6)}, 

(ii) v(7) 0 S and v(6), v(8) E span{S, V/7)1}, 
(iii) V (8) 0 S and v(6), V(7) E span{S, V8 8)} 

Of course, we must also require rank(F4(A)) = 6. Now consider the following 
three groups of conditions for the coefficients of A: 

(3. l a) C2(C4 - 2q44) = c4 + )c4044 + u(a42c2 + a43C3) , 

(3.1b) c2(c5 - 2045) = C5+ c5045 + u(a52c + a53c3 +54C4) 

(3. 1 c) C2(C6 - 2q46) = c 6 +)ic6046 + (a62C2 + a63C3 + a64C4 +65C5) 

where 

(3.1d) = 22 + (2c323 and - 2 a -3(c2 
- C3)(2a32C2 ) 3 

a3C2c3- 3c2) an L a32C2 (2c 3 - 3c2) 

(3.2a) c2(c4 - 2044) = C4+ )c4044 + ,sa43043, 

(3.2b) C2(C5 - 2045) = C5 + {c5045 + (a53043 + a54044), 

(3.2c) C2(C6 - 2046) = C6 + AC6046 + p(a63043 + a64044 + a65045), 

where 

(3.2d) =~c -__ __ ___ __ 
2 

3(c2 -c )(2a32 C2- 4) 3 (c2 - c3) -2a32c2 and 3 
= a32c2c3 

a32c2c3 a32C2C3 



656 BRYNJULF OWREN AND MARINO ZENNARO 

(3.3a) c2(c4 - 2044) = c4+A(a42c2 + a43c3) + jsa43043, 

(3.3b) c2(c5 - 2045) = C5 )a52c2 + a534 + a54c4) + #u(a53043 +54044) 

(3.3c) c2(C6 - 2046) = C6+ (a62c2 + a63C3 + a64C4+ a65C5) 

+ u(a63043 + a64044 + a65045), 

where 

(3.3d) 
i = (C2 

- 
C3) - 2a 3c2C2 + C3(C2 - C3) 
32 a3(c2-2 

Recall that 043 = a32c2, 044 = a42c2 + a43c3, 045 = a52c2 + a53c3 + a54c4, and 
046 = a62C2 + a63c3 + a64c4 + a65c5 . 

Simple, but tedious calculations lead to the fact that, for all cases (i), (ii), and 
(iii), we must have a32 0 0 (otherwise, the matrix A would not be 4-minimal) 
and that: 

(i) is equivalent to (3. 1a-d) and (3.2a-d), where c2 $ C3, C3 0 0, 3c2 - 
2c3 O, and 2a32c2 - C3o; 

(ii) is equivalent to (3. la-d) and (3.3a-d), where 3c2 - 2C3 0 and a32C2 + 

C3(C2 -c3) 0; 

(iii) is equivalent to (3.2a-d) and (3.3a-d), where c3 : 0 and c3(C2 - C3) - 
2a32c2 7 0. 

Moreover, it is also easy to see that, for all cases (i), (ii), and (iii), the fol- 
lowing conditions, expressing that V/(6) V (7), and V (8) are linearly dependent, 
can equivalently replace either of the two corresponding groups of conditions 
among (3.1a-d), (3.2a-d), and (3.3a-d): 

(3.4a) a42c (c3 - c4) + a43c3(c3 - c2c4) = (2c3 - 3c2)a43043, 

(3.4b) a52C2(C3 - C5) + a53c3(c3 - c2c5) + a54c4(c3c4 - c2c5) 
= (2c3 - 3c2)(a53043 + a54044), 

62 C2 (C3 - C6) + a63C3(C3 - C2C6) + a64C4(C3C4 - C2C6) 

(3.4c) + a65c5(c3c5 - C2C6) 
= (2c3 - 3c2)(a63043 + a64044 + a65045). 

The method associated with the Dormand-Prince(5,4) pair obeys 2c3 - 3c2 = 0 

(i.e., V(6) and V (7) are proportional) and (iii) holds, but (i) and (ii) do not. 
This method is included in the class of 6-stage CERK methods of order 4, which 
is obtained by imposing c3 :A 0 and the following two groups of conditions: 

(3.5a) 2043 = c23, 

(3.5b) 2044 = C4 , 

(3.5c) 24 = C5, 

(3.5d) 2046 = 2C6 
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and 

(3.6a) 2a42c2c3 + 3a43c3 = 

(3.6b) 2a52c2c3 + 3(a 3c3 + a54C2) =c3 

(3.6c) 2a62c2C3 + 3(a63C3 + a64c2 + a65C5) = C63 

Indeed, c3 :A 0 and (3.5) imply (3.2) with A = -2 and ,l = 0. Moreover, since 
the relations (3.2) are satisfied, conditions (3.6) are equivalent to conditions 
(3.3) with A = -2c3/c2 and ,u = 2(2c3 - 3c2)/c2. Since c32(c2 - C3) - 2a32c2 = 

-c 3 54 0, it therefore follows that (iii) holds. Summarizing, we can choose 
arbitrary c2, C3, and C4, subject to the only restrictions c2 $ 0, C3 $ 0, 
c3 : c4, and we get 

c2 
(3.7b) a 3 

3 
2 

3c 2c4)c -2c 2 

(3.7b) a42 ( C3 3 - (C4-C3 C4 
=2 2c2 C3 a43- 2 

C3 

Furthermore, we can choose arbitrary c5, a54, c6, a64, a65 (subject to A 
being 4-minimal) leading to 

(3c3 - 2c5)4 + 6a 4c4(c4 - c3) 
5S2= 2c2c 

(3.7c) 2 3 

(c5 - c3)C2 - a54c4(3c4 - 2c3) 
53 ~~~~~~2 

C3 

a62 = (3c3 - 2c6)C2 + 6a64C4(C4 - c3) + 6a65c5(c5 - c3) 
62 ~~~~~2c c3 

(3.7d) ( 3 
2~~~~~ a =(C6 - c3)C6 

_ 
a64C4(3c4 - 2C3) - a65C5(3C5 - 2C3) 

C3 

3.3. Order p = 5. There are 12 secondary conditions, corresponding to 

v(4) = (/(4), 0, 0, 1/2, 0, 0) of order 3, 
(6) = (0(6) 0, 0, 0, 1/2, 0), ( = (7) , 0, 0,1/, /0) 

v(8) = (1(8), 0, 0, 00 1/6, 0) of order 4, 

and 

V(10) =((10) 0 0 0 0 , 1/2), 01) =(q5(l) 0, 0, 0, 1/3), 
(12) ((12) 0, 0, 0,0, 1/6), (13) (0(13) ,0, 0, 0, 1/4), 

v(14) =((14) 0, 0, 0, 0, 1/8), V (15) (0(5) 5 0, 0, 0, 0, 1/12), 
(I ) =((1 6), 0, 0, 0, 0, 1/24), V(17) =(.(17) 0 0 0 0, 1/4) 
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of order 5. Moreover, o(1O) = ?(6)C (11) = 0t(7)C, (12) = (8)C, 0(13) - 

(5)ATT 0(14) = b(6)AT, 0(15) = b(7)AT, 0(16) = b(8)AT, and 17,j = (0 )2 
j = 1 , ... , LJ 

To begin with, we observe that the maximum number N of linearly inde- 
pendent secondary conditions clearly obeys N > 3. If we assume N = 3, 
then V(16) and V(17) are proportional and hence, since 0(16) = 0(4)(A T)2 and 

017, j = (04 j)2 , j = 1, ... ., , we easily obtain the absurdity 0(16) = 0(17) = 0. 

Therefore, V (16) and V (17) must be linearly independent, and we can con- 
clude that N > 4. So we assume N = 4. From above, we know that the 
dimension of span{,(10) , (1) v(12) v(13) v(14) v(15) v(16) v }(17) equals 
2. First assume that V,(17) is a linear combination of V(12) V(14), V(15) , and 
v(16). In this case, since 0 = = = = we also have 

017,3 = (a32C2)2 =0. Again, because c2 $ 0, we must have a32 =0 and hence, 
a a a ~ ~ ~~~~~~~2 a 2 

43= a32C2 = 0, 063 = a32C2C3 = 0, 073 = a32C2 = ?' 010,3 = a32C2C3 = 0 

011,3 = a32C2C3 = ? and 0,3,3 a32c4 = Since also 083= ?, the poly- 
nomial z3(6) is not involved in the secondary conditions, and therefore, with 
reference to Theorem 2.11 we get S D {3}, which is a good index set for 
A, and v > 8. Then assume a32 # 0 and that V,(17) is linearly indepen- 
dent of V,(12) , / (14) y y(15) and V (16). In this case, the rows VI(12) y V(14) 
y/(15) , and V/(16) must be proportional, and consequently, since 016, 4 = 0, 

we must also have 0q124 = 014,4 = 0 and 015,4 = a43a32c2 = 0. Further, 
2 a32c2 $ 0 implies a43 = 0 and q84 = a43a32c2c4 = 0 . Moreover, since 

V(6) (7), and V (8) cannot be linearly independent (this would imply N > 5), 
(3.4a) holds, and reduces to a42C2(c3 - C4) = 0 . So only two cases are possi- 
ble, either a4f :$ 0 and C3 = C4, or a42 = 0. Indeed, the former case cannot 
hold, since it contradicts the fact that A is 5-minimal. In fact, since V (13) 

must depend linearly on V (16) and V/(17), and since 016,3 = 016,4 = 0, there 
should exist A $ 0 such that 013,3 = A017,3 and 013,4 = A17,4' leading to 

a3C23 = A(ac )2 and a42c3 = A(a42c2)2 , so that a32 = a42. Thus, the matrix A 
has two equal rows, contradicting Proposition 2.3. So we are left with a42 = 0 
which implies 044 = a42c2 + a43c3 = 0 64 = c4(a42c2 + a43c3) =0, q74 

a 2 2 =c a2c=2+a432c+a) a42C2 +a43c3 =0, ? 1 c4 (a42C2+a43C3) = ? 011,4 42C2 43C3) = 0 

013,4 = a42c2 + a43C3 = 0, and 0q174 = (a42C2 + a43C3) = 0. In conclusion, 
Z4(6) is not involved in the secondary conditions, so with reference to Theorem 
2.1 1 we have S D {4}, which is a good index set for A, and hence, v > 8. If 
N > 5, then Theorem 2.11 yields again, in every case, v > 8. 

As far as we know, the cheapest known CERK methods of order 5 require 
nine stages. As an example, we quote the 9-stage CERK method of order 5 
associated with the RKV(5, 6) embedded pair (see Enright et al. [5]). However, 
since we shall find examples of 8-stage CERK methods of order 5, we can 
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conclude that 
CEN(5) = 8. 

Now we want to find conditions to be imposed on an 8 x 8 matrix A, 
necessarily 5-minimal, such that it determines a CERK method of order 5. In 
view of the previous case, p = 4, we observe that at least six rows among 

(i), i = 1, ... , 8, must be linearly independent. So we can, for example, 
assume that V(1) v (2) 

, v (3) 
, v (4) 

, v (5), and VI(8) are linearly independent, 
and then impose condition (iii). Then we must have a32 $ 0?, C3 $ 0, and 
C 2(C - c3) - 2a32c2 $ 0. Moreover, conditions (3.2a-d) and (3.3a-d) (or, 
equivalently, (3.2a-d) and 3.4a-d)) must be satisfied. However, since we now 
have dim(A) = 8, we must supply both (3.2a-d) and (3.3a-d) with the obvious 
two conditions corresponding to the last two stages (see [9]). 

Now, observe that, if 0(i) E Rr is a C-transformation of 0(i ) E Rr__I then 
by (2.8) we get qi,r-I = qi,,r-2, whereas if 0(i) E Rr is an A-transformation of 

(i) E Rr- , then qi r-I = qi,,r_2/(r- 1). So we can conclude that condition 
(iii) automatically implies 

(iv) VI(10) V(I11) E span{v(2) (3) v(5) v(6) v(9) v(12)} and 

(v) vI(14) vI(15) E span{v(2) v(4) v (7) , v(8) , v (13), Iv(16)}. Therefore, we 
assume that VI(16) ? span{S, /8), V(9) } and impose that 

(vi) VI(12) vI(13) vI(17) E span{S, V(8) v(9), v(16)} in order to get 
rank(G5(A)) = 8. 

A particular class of these methods is obtained by imposing c3 : 0 and the 
conditions (3.5) and (3.6) together with their counterparts for the last two stages. 
It can be shown (see [9]) that this requires 2c3 = C= C5. 

Moreover, like for p = 4, a54 is a free parameter. However, for the matrix 
A to be 5-minimal we must require a54 $ 0. In conclusion, we can choose 
arbitrary c2, C3, a54 subject to the restrictions c2 1 0, C3 $ 0, and a54 $ 0. 
By using c5 = C4= 2C3 in (3.7a-c) we get 

2 
C3 

a32 =2c2' 

2c2 
C2c a4=- 3, a4= 4c 

a52 = 2c3(3a54 - C3) a53 =4c3-8a54. 
C2 

Furthermore, we can choose arbitrary c6, subject to the only restrictions c6 $ C3 
and c6 $ 2C3, and we get 

C6 (2C3 - C6) C6(C6 - C3) 
a62 2c2c3 a63 3c2 

a C6 (C6 - C3)(2c3 + a54 - c6) c6(c6 - c3)(c6 - 2C3) 

a64 - 1 2a54c32 a65 = - 12a54c3 
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Finally, we can choose arbitrary c7, a76, C8, a86, a87 (apart from combinations 
leading to A not being 5-minimal), and solve for the remaining coefficients 
a72, ... , a75 and a82, ... , a85. Their general expressions are quite compli- 
cated, so we prefer to present the Butcher tableau clA as an example of such 
methods, together with the continuous weights bi(0). The choices for the free 
parameters are not motivated by stability considerations or error constant min- 
imization, but rather by our desire to obtain simple coefficients. 

0 
1 1 
4 4 

1 1 1 

0 -s 1 

1 12 12 

3 0 9 3 3 
4~~~~~ 

0 4 0 -3 0 4 
55 5 

1 1 0 0 4 2 0 1 

= 5 _2004 + 3 _25 6 b10) 5 3 +0 

b2(0) = 0, 

b3(0) = 12805+ 2404 _ 208 03 + 802 
34(0) = 35 '5_1 258 + 9a 

b4(0) = 3525 120 + - 
_ 4 3 2 b ()~5200 + 20 -60 

b6()= 185 + 5604 11203 + 802 

b7(0) = _ 2005 + 1504 23 + 02 

5 _ 4 3 2 
b8 (0) = 4405190 + 130 -3 0 
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